Weak fibration: Difference between revisions

From Topospaces
No edit summary
 
m (2 revisions)
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
==Definition==
==Definition==


A [[continuous map]] <math>p:E \to B</math> is termed a '''weak fibration''' or a '''Serre fibration''' if given any map <math>F:I^n \times I \to B</math> and a map <math>\tilde{f}: X \to E</math> such that <math>p(\tilde{f}(x)) = f(x,0)</math>, there exists a map <math>\tilde{F}:I^n \times I \to E</math> satisfying:
A [[continuous map]] <math>p:E \to B</math> is termed a '''weak fibration''' or a '''Serre fibration''' if given any map <math>F:I^n \times I \to B</math> and a map <math>\tilde{f}: I^n \to E</math> such that <math>p(\tilde{f}(x)) = f(x,0)</math>, there exists a map <math>\tilde{F}:I^n \times I \to E</math> satisfying:


* <math>p \circ \tilde{F} = F</math>
* <math>p \circ \tilde{F} = F</math>
* <math>F(x,0) = \tilde{f}(x)</math>
* <math>F(x,0) = \tilde{f}(x)</math>

Latest revision as of 20:00, 11 May 2008

This article defines a property of continuous maps between topological spaces

Definition

A continuous map p:EB is termed a weak fibration or a Serre fibration if given any map F:In×IB and a map f~:InE such that p(f~(x))=f(x,0), there exists a map F~:In×IE satisfying:

  • pF~=F
  • F(x,0)=f~(x)