Homologically Euclidean point: Difference between revisions

From Topospaces
No edit summary
m (3 revisions)
 
(No difference)

Latest revision as of 19:46, 11 May 2008

Definition

A point in a topological space is termed homologically -Euclidean if:

and:

Relation with other properties

Stronger properties

In particular any point in a -manifold or a -locally Euclidean space is homologically -Euclidean.

See also point-deletion inclusion.