Weak fibration: Difference between revisions
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
==Definition== | ==Definition== | ||
A [[continuous map]] <math>p:E \to B</math> is termed a '''weak fibration''' or a '''Serre fibration''' if given any map <math>F:I^n \times I \to B</math> and a map <math>\tilde{f}: | A [[continuous map]] <math>p:E \to B</math> is termed a '''weak fibration''' or a '''Serre fibration''' if given any map <math>F:I^n \times I \to B</math> and a map <math>\tilde{f}: I^n \to E</math> such that <math>p(\tilde{f}(x)) = f(x,0)</math>, there exists a map <math>\tilde{F}:I^n \times I \to E</math> satisfying: | ||
* <math>p \circ \tilde{F} = F</math> | * <math>p \circ \tilde{F} = F</math> | ||
* <math>F(x,0) = \tilde{f}(x)</math> | * <math>F(x,0) = \tilde{f}(x)</math> | ||
Revision as of 19:09, 2 December 2007
This article defines a property of continuous maps between topological spaces
Definition
A continuous map is termed a weak fibration or a Serre fibration if given any map and a map such that , there exists a map satisfying: