Alexander duality theorem: Difference between revisions

From Topospaces
No edit summary
 
No edit summary
Line 3: Line 3:
==Statement==
==Statement==


Let <math>M</math> be a [[manifold]] and <math>K</math> a [[compact space|compact]] subset of <math>M</math>. Denote by <math>\overline{H}^i(K)</math> the direct limit of cohomology groups for all open sets containing <math>K</math>. Suppose <math>(M,M \setminus K)</math> is <math>R</math>-orientable. Choose a generator for <math>H_n(M, M \setminus K)</math> (this group is a free module of rank one over the coefficient ring). Then [[cap product]] with this generator yields a map:
Let <math>M</math> be an [[orientable manifold]] and <math>K</math> a [[compact space|compact]] subset of <math>M</math>. Denote by <math>\overline{H}^i(K)</math> the direct limit of cohomology groups for all open sets containing <math>K</math>. Suppose <math>(M,M \setminus K)</math> is <math>R</math>-orientable. Choose a generator for <math>H_n(M, M \setminus K)</math> (this group is a free module of rank one over the coefficient ring). Then [[cap product]] with this generator yields a map:


<math>\overline{H}^i(K; R) \to H_{n-i}(M, M \setminus K ; R)</math>
<math>\overline{H}^i(K; R) \to H_{n-i}(M, M \setminus K ; R)</math>

Revision as of 20:27, 5 December 2007

This article is about a duality theorem

Statement

Let be an orientable manifold and a compact subset of . Denote by the direct limit of cohomology groups for all open sets containing . Suppose is -orientable. Choose a generator for (this group is a free module of rank one over the coefficient ring). Then cap product with this generator yields a map:

This map is an isomorphism.

Note that the specific isomorphism depends on the choice of orientation on the pair .