Locally connected space: Difference between revisions
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
==Definition== | ==Definition== | ||
A | ===Equivalent definitions in tabular format=== | ||
{| class="sortable" border="1" | |||
! No. !! Shorthand !! A topological space <math>X</math> is termed locally connected if ... | |||
|- | |||
| 1 || [[locally connected space at a point|locally connected at]] every point || for every point <math>x \in X</math>, and every open subset <math>U</math> of <math>X</math> containing <math>x</math>, there exists an open subset <math>V</math> of <math>X</math> such that <math>x \in V</math>, <math>V \subseteq U</math>, and <math>V</math> is a [[connected space]] with the subspace topology. | |||
|- | |||
| 2 || [[weakly locally connected space at a point|weakly locally connected at]] every point || for every point <math>x \in X</math>, and every open subset <math>U</math> of <math>X</math> containing <math>x</math>, there exists a subset <math>A</math> of <math>X</math> such that <math>x</math> is in the interon of <math>A</math>, <math>A \subseteq U</math>, and <math>A</math> is a [[connected space]] with the subspace topology. | |||
|} | |||
==Relation with other properties== | ==Relation with other properties== | ||
Revision as of 00:42, 28 January 2012
This article defines a property of topological spaces: a property that can be evaluated to true/false for any topological space|View a complete list of properties of topological spaces
Definition
Equivalent definitions in tabular format
| No. | Shorthand | A topological space is termed locally connected if ... |
|---|---|---|
| 1 | locally connected at every point | for every point , and every open subset of containing , there exists an open subset of such that , , and is a connected space with the subspace topology. |
| 2 | weakly locally connected at every point | for every point , and every open subset of containing , there exists a subset of such that is in the interon of , , and is a connected space with the subspace topology. |
Relation with other properties
Related properties
- Connected space: Being connected does not imply being locally connected, and being locally connected does not imply being connected. Further information: connected not implies locally connected, locally connected not implies connected