Hausdorffization: Difference between revisions

From Topospaces
No edit summary
No edit summary
Line 1: Line 1:
==Definition==
==Definition==


Let <math>X</math> be a [[topological space]]. For <math>a,b \in X</math>, define <math>a \sim b</math> if any open set containing <math>a</math> intersects any open set containing <math>b</math>. The '''Hausdorffization''' of <math>X</math> is a [[quotient map]] <math>X \to H(X)</math> with the universal property that any continuous map from <math>X</math> to a Hausdorff space factors uniquely through the Hausdorffization.
Let <math>X</math> be a [[topological space]]. For <math>a,b \in X</math>, define <math>a \sim b</math> if any open set containing <math>a</math> intersects any open set containing <math>b</math>. The '''Hausdorffization''', also known as '''Hausdorffification''', '''Hausdorffication''', '''maximal Hausdorff quotient''', or '''Hausdorff quotient''', of <math>X</math> is a [[quotient map]] <math>X \to H(X)</math> with the universal property that any continuous map from <math>X</math> to a Hausdorff space factors uniquely through the Hausdorffization.


==References==
==References==


* [https://www.math.leidenuniv.nl/scripties/BachVanMunster.pdf The Hausdorff Quotient] by Bart Van Munster
* [https://www.math.leidenuniv.nl/scripties/BachVanMunster.pdf The Hausdorff Quotient] by Bart Van Munster

Revision as of 22:37, 15 November 2015

Definition

Let be a topological space. For , define if any open set containing intersects any open set containing . The Hausdorffization, also known as Hausdorffification, Hausdorffication, maximal Hausdorff quotient, or Hausdorff quotient, of is a quotient map with the universal property that any continuous map from to a Hausdorff space factors uniquely through the Hausdorffization.

References