Kunneth formula for homology: Difference between revisions

From Topospaces
No edit summary
 
No edit summary
Line 3: Line 3:
Suppose <math>X</math> and <math>Y</math> are [[topological space]]s. We then have, for any <math>n \ge 0</math>:
Suppose <math>X</math> and <math>Y</math> are [[topological space]]s. We then have, for any <math>n \ge 0</math>:


<math>H_n(X \times Y) \cong \sum_{i + j = n} H_i(X) \otimes H_j(Y) \oplus \sum_{p + q = n-1} \text{Tor}(H_p(X),H_q(Y))</math>
<math>H_n(X \times Y) \cong \sum_{i + j = n} H_i(X) \otimes H_j(Y) \oplus \sum_{p + q = n-1} Tor(H_p(X),H_q(Y))</math>


==Results used==
==Results used==

Revision as of 20:17, 3 November 2007

Statement

Suppose and are topological spaces. We then have, for any :

Results used

The Kunneth formula combines the Kunneth theorem and the Eilenberg-Zilber theorem.

Proof

Fill this in later