Equiconnected space

From Topospaces
Revision as of 19:43, 11 May 2008 by Vipul (talk | contribs) (1 revision)

This article defines a property of topological spaces: a property that can be evaluated to true/false for any topological space|View a complete list of properties of topological spaces

Definition

A topological space X is said to be equiconnected if there is a continuous map k:X×I×XX such that k(x,t,x)=x for all x and k(x,0,y)=x,k(x,1,y)=y for all x and y.

Roughly, speaking, at any given time t, we get a map X×X to X. At time 0, it is projection on the first coordinate, and at time 1, it is projection on the second coordinate. For elements on the diagonal, it always remains the value at the diagonal.

`