Manifold
This article defines a property of topological spaces: a property that can be evaluated to true/false for any topological space|View a complete list of properties of topological spaces
Definition
A topological space is said to be a manifold if it satisfies the following equivalent conditions:
- It is Hausdorff
- It is second-countable
- It is locally Euclidean, viz every point has a neighbourhood that is homeomorphic to some open set in Euclidean space. If the topological space is connected, the dimension of the Euclidean space is the same for all points
Significance of three parts of the definition
Significance of local Euclideanness
Locally Euclidean is the most important property of manifolds, since this means that all the nice properties that we know about Euclidean spaces, are applicable locally. Thus, manifolds are locally contractible, locally path-connected, locally metrizable, and so on. Also, many properties of the manifold that are essentially local in nature can be proved using local Euclideanness.
Significance of Hausdorffness
If we do not assume Hausdorffness, we get pathologies like the line with two origins.
More pertinently, the important way in which we use Hausdorffness is as follows: in a Hausdorff space, any compact subset is closed. Thus, in particular, the images of closed discs of Euclidean space, inside the manifold, continue to remain closed in the whole manifold. This is crucial to applying the gluing lemma for closed subsets, for proofs like those of the fact that any connected manifold is homogeneous or that the inclusion of any point in a manifold is a cofibration.
Significance of second-countability
The assumption of second-countability can be dispensed with for a number of purposes, but is crucial for some applications. Fill this in later
Relation with other properties
Stronger properties
- Connected manifold
- Compact manifold
- Paracompact manifold
- Metrizable manifold
- Differentiable manifold
- Lie group
Weaker properties
- Manifold with boundary
- Locally Euclidean space
- Locally contractible space
- Locally metrizable space
- Nondegenerate space: For full proof, refer: Manifold implies nondegenerate
Metaproperties
Products
This property of topological spaces is closed under taking finite products
A direct product of manifolds is again a manifold. Fill this in later