Orientable manifold
This article defines a property of manifolds and hence also of topological spaces
Definition
A manifold is said to be orientable if it possesses an orientation, viz there exists a global section of the orientation-generator sheaf (the subsheaf of the orientation sheaf whose fibre at every point is the set of generators of the stalk at that point).
By default orientable means orientable with integer coefficients. Orientability over any ring is equivalent to orientability with integer coefficients if in the ring; if then any manifold is orientable with respect to that ring.
However, the number of possible orientations depends on the choice of ring; for a connected orientable manifold, the number of possible orientations equals the number of invertible element in the ring of coefficients.
Relation with other properties
Stronger properties
Facts
- The map from the orientation-generator sheaf to the manifold is a double cover; hence if the fundamental group of the manifold does not possess a normal subgroup of index two, the manifold must be orientable. In particular, any simply connected manifold is orientable. However, the converse is not true: real projective space in odd dimensions has fundamental group of order two, but is orientable.
- Every manifold is either orientable or has an orientable double cover: this double cover is the orientation-generator sheaf itself