Poincare polynomial
This article describes an invariant of topological spaces that depends only on its homology groups
Definition
Given a topological space which has finitely generated homology, the Poincare polynomial of is defined as the generating function of its Betti numbers, viz the polynomial where the coefficient of is .
Note that for a space with homology of finite type, all the Betti numbers are well-defined, but infinitely many of them are nonzero, so we get a Poincare series instead of a Poincare polynomial.
The Poincare polynomial of is denoted .
Facts
Disjoint union
The Poincare polynomial of a disjoint is the sum of the Poincare polynomials of the individual spaces:
Wedge sum
The Poincare polynomial of a wedge sum of two path-connected spaces, is the sum of their polynomials minus 1.
Product
When either of the spaces is a sphere, the Poincare polynomial of the product of the spaces is the product of the Poincare polynomials. However, the result does not hold for arbitrary topological spaces.