Metric is jointly continuous

From Topospaces
Revision as of 21:25, 19 July 2008 by Vipul (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Statement

Let (X,d) be a metric space. Then X is also a topological space in the induced topology, and we can consider the metric as a map of topological spaces d:X×XR. This map is jointly continuous, i.e. it is continuous from X×X given the product topology.

Definitions used

Metric space

Topology induced by a metric

Product topology

Continuous map

Proof

It suffices to show that inverse images of open subsets of the form (,a) and (b,) are open subsets of X×X. We will use the triangle inequality to prove this.