Sphere
Definition
As a subset of Euclidean space
The unit -sphere is defined as the subset of Euclidean space comprising those points whose distance from the origin is .
Particular cases
| sphere | |
|---|---|
| 0 | -- discrete two-point space |
| 1 | circle |
| 2 | 2-sphere |
| 3 | 3-sphere |
Equivalent spaces
| Space | How strongly is it equivalent to the circle? |
|---|---|
| boundary of the -hypercube | homeomorphic; not diffeomorphic because of sharp edges |
| boundary of the -simplex | homeomorphic; not diffeomorphic because of sharp edges |
| ellipsoid in | equivalent via affine transformation |
Algebraic topology
Homology groups
With coefficients in , the -sphere has and for . In particular, the -sphere is -connected.
Interpretations in terms of various homology theories:
Fill this in later
With coefficients in any -module for a ring , the -sphere has and for all .
Cohomology groups and cohomology ring
With coefficients in , the -sphere has and for . In particular, the -sphere is -connected.
With coefficients in any -module for a ring , the -sphere has and for all .