Aspherical space

From Topospaces
Revision as of 00:00, 2 December 2007 by Vipul (talk | contribs)
Jump to: navigation, search
This article defines a homotopy-invariant property of topological spaces, i.e. a property of homotopy classes of topological spaces

View other homotopy-invariant properties of topological spaces OR view all properties of topological spaces


A topological space is termed aspherical if it possesses a universal covering space, and if its universal covering space is weakly contractible (equivalently the universal covering space is acyclic; for path-connected simply connected spaces, the two notions are equivalent).