Box topology

From Topospaces
Revision as of 16:53, 20 July 2008 by Vipul (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
This article is about a basic definition in topology.
VIEW: Definitions built on this | Facts about this | Survey articles about this
View a complete list of basic definitions in topology


Let I be an indexing set, and \{ A_i \}_{i \in I} be a family of topological spaces. Define:

P := \times_{i \in I} A_i

to be the Cartesian product of the A_is. The box topology is a topology on P in terms of the topologies on A_is defined in the following equivalent ways:

  1. It is a topology with basis as the open boxes or open rectangles: sets of the form \times_{i \in I} U_i where each U_i is open in A_i
  2. Given a basis for each space A_i, it is a topology with basis as sets of the form \times_{i \in I} U_i, where each U_i is a basis element of A_i

Equivalence of definitions

Further information: Equivalence of definitions of box topology, Open boxes satisfy the condition for a basis

Related notions

Product topology is a related, and more useful, topology on the Cartesian product of topological spaces. In fact, the default topology endowed on the Cartesian product of topological spaces is the product topology. The box topology and product topology are equal for products of only finitely many spaces. For infinite products, the product topology is a coarser topology, because it admits in its basis only those open rectangles where all but finitely many of the open sides are the whole space.

A list of properties of topological spaces closed under taking box products is available at Category:Properties of topological spaces closed under box products.


Textbook references

  • Topology (2nd edition) by James R. MunkresMore info, Page 114, Chapter 2, Section 19