Connected sum of manifolds

From Topospaces
(Redirected from Connected sum)

Definition

Let M1 and M2 be connected manifolds. A connected sum of M1 and M2, denoted M1#M2, is constructed as follows. Let fi:RnUi be homeomorphisms where Ui are open subsets of Mi. Let Mi denote the complement in Mi of the image of the open unit ball in Rn, under fi. Then the connected sum is the quotient of M1M2 under the identification of the boundary Sn1s with each other, via the composite f2f11.

In general, the homotopy type of the connected sum of two manifolds depends on the choice of open neighbourhoods and on the way of gluing together. Further information: homotopy type of connected sum depends on choice of gluing map

Homology

Further information: Homology of connected sum

The homology of the connected sum can be computed using the Mayer-Vietoris homology sequence for open sets obtained by enlarging the Mis slightly, and using the fact that Mi is a strong deformation retract of Mi minus a point.

The interesting phenomena occur at n and n1, because this is where the gluing is occurring.

Fundamental group

Related notions